首页> 外文OA文献 >Modal Identification of the 'Steel-Quake' Structure Using the Data-Driven Stochastic Subspace and ARMAV Methods
【2h】

Modal Identification of the 'Steel-Quake' Structure Using the Data-Driven Stochastic Subspace and ARMAV Methods

机译:使用数据驱动随机子空间和ARMAV方法的“钢-地震”结构的模态识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, two techniques used for modal identification of output-only systems are presented and compared. The first technique is based on an ARMAV model. The method is known as the prediction error method (PEM) and requires a non-linear iterative optimisation procedure. The second technique is a stochastic subspace method that estimates the system matrices of a stochastic state space model by a data-driven algorithm and by using numerical techniques such as singular value and QR decompositions. The comparison between both techniques is performed over the “Steel-Quake” benchmark proposed in the framework of COST Action F3 “Structural Dynamics”. The results show that the investigated techniques give good results in term of estimated modal parameters. Especially, it is found that the stochastic subspace technique is much faster than the PEM.
机译:在本文中,提出并比较了两种用于仅输出系统的模式识别的技术。第一种技术基于ARMAV模型。该方法称为预测误差方法(PEM),需要非线性迭代优化过程。第二种技术是一种随机子空间方法,它通过数据驱动算法并使用诸如奇异值和QR分解之类的数值技术来估计随机状态空间模型的系统矩阵。两种技术之间的比较是根据COST Action F3“结构动力学”框架中提出的“钢-雷神”基准进行的。结果表明,所研究的技术在估计模态参数方面取得了良好的效果。特别是,发现随机子空间技术比PEM快得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号